THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017)

Tutorial 5

Tongou Yang

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that $g \circ f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable. Note this question is easy if we assume that g is Lipschitz.
2. (Optional, MATH 4050 required) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and $g:[c, d] \rightarrow[a, b]$ be continuous. Is $f \circ g:[c, d] \rightarrow \mathbb{R}$ Riemann integrable?
3. Prove that for each $f, g \in \mathcal{R}[a, b]$, we have $f g \in \mathcal{R}[a, b]$.

Corollary of (1): Let $f \in \mathcal{R}[a, b]$.
(a) For $p=1,2,3, \ldots$, the function $f^{p} \in \mathcal{R}[a, b]$.
(b) $|f| \in \mathcal{R}[a, b]$. Moreover, for $p>0$, the function $|f|^{p} \in \mathcal{R}[a, b]$.
(c) If $f \neq 0$ and $\frac{1}{f}$ is bounded, then $\frac{1}{f} \in \mathcal{R}[a, b]$
(d) $e^{f(x)}, \sin f(x), \ldots$ are in $\mathcal{R}[a, b]$.
(We know that $\mathcal{R}[a, b]$, the collection of all real valued Riemann integrable functions on $[a, b]$ is a vector space over \mathbb{R}. This shows that $(\mathcal{R}[a, b],+, \cdot)$ is a commutative ring with unity and thus an commutative \mathbb{R}-algebra.)
4. (Warning: This topic is for reference only) For a bounded function $f:[a, b] \rightarrow$ \mathbb{R}, we define its variation to be

$$
\operatorname{Var}(f):=\sup \left\{\sum_{j=0}^{n-1}\left|f\left(x_{j+1}\right)-f\left(x_{j}\right)\right|\right\}
$$

where the supremum is taken with respect to all partitions $a=x_{0}<x_{1}<\cdots<$ $x_{n}=b$, whenever the supremum exists in \mathbb{R}. In this case, we say f is of bounded variation on $[a, b]$.
(a) Let f be of bounded variation on $[a, b]$. Show that f is Riemann integrable on $[a, b]$.
(b) Let f be monotone. Show that f is of bounded variation, and thus f is Riemann integrable on $[a, b]$. Do the same for Lipschitz continuous functions on $[a, b]$.
(c) Show that $f:=\chi_{\mathbb{Q} \cap[0,1]}$ is not of bounded variation on $[0,1]$.
(d) We have shown that the function $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable:

$$
f(x):=\left\{\begin{array}{l}
1, \text { if } x=\frac{1}{n} \text { for some } n=1,2, \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

Is this function of bounded variation?

